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Density of states and random walks in tetrahedrally bonded 
solids 

TLukes and BNix 
Department of Applied Mathematics and Mathematical Physics, University College, 
PO Box 78, Cardiff, UK 

Received 19 March 1973, in final form 23 May 1973 

Abstract. The hamiltonian of Thorpe and Weaire is used to obtain a general expression 
for the density of states in a tetrahedrally bonded solid in terms of the number of returns 
to the origin. This expression is therefore valid for topological disorder and enables the 
density of states to  be calculated if the number of returns to the origin is known. Application 
to a periodic solid and use of results on the number of returns to the origin in this case 
checks with the known expression for the density of states. 

1. Introduction 

The relationship between the density of states in a tight-binding model and the number 
of returns to the origin in a random walk on a lattice has been investigated by a number of 
authors (eg Cyrot-Lackmann 1968, Thorpe 1972). If the hamiltonian is given by 

where V is the overlap integral between states on adjacent lattice sites, it is possible to 
prove the following relation : if n(E) denotes the density of states at energy E 

+ m  /-, Eh(E)dE = V f r l  

where rl is the number of returns to the starting point in a walk of I steps, an average 
being taken over all starting points in the structure. This relation proved useful, for 
example, in investigating the relationship between the values of rl on different types of 
lattices (Thorpe 1972). 

In this paper we consider the more general two-band hamiltonian considered by 
Weaire and Thorpe (1971) : 

H = V, 1 I i j )  ( i j ' I+ V, 1 I i j )  (i'j 6i,s,,j = H ,  + H ,  (1.3) 
i i # i '  

j # j '  j 

where Iij) refers to the valence orbital associated with site i whose bond index isj, and 
limit ourselves to structures with fourfold coordination. Here the symbol 6 i , s , , j  is defined 
as follows : 

= 1 if i' is the nearest neighbour of atom i associated with bond j 
= 0 otherwise d i , s J  
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and has been introduced to make explicit the restriction on the summation over i' 
implicit in the Weaire-Thorpe model. 

We show that a number of interesting relations exist between terms which occur in 
the expansion of the Green function and r l ,  and finally that the density of states can be 
written in terms of the number of returns to the origin. By explicitly evaluating this 
expression for a periodic lattice we obtain a density of states which is found to  be identical 
with that of Thorpe and Weaire for this model. A number of other mathematical proper- 
ties of the model are obtained. An important feature of our expression for the density of 
states is that for the case of topological disorder it also applies to disordered lattices. The 
existence of disorder manifests itself only through the expression for the number of 
returns to  the origin, and by evaluating this function for a topologically disordered 
lattice another method of calculating the density of states for such systems is obtained. 

In Q 2, we derive an expression for the matrix elements of each term in the Dyson 
expansion of the total Green function. In Q 3, we relate such terms to  the number of 
returns to the origin. By rearranging the terms of the series we obtain a compact expres- 
sion for the density of states as a sum of contributions over all values of t  of the number of 
returns to the origin after t steps. Using the explicit expression for the number of returns 
to  the origin given by Thorpe this is then evaluated to  give the density of states for a 
periodic lattice. 

2. Calculation of the full Green function 

The matrix 
( i , j lEZ-H(') lk ,  I )  = 6,((E+ V,) aj,- VI} 

is a block matrix which is easily inverted to  give 

(i,jlG0lk, 0 = 6 d A  + B  6 j t )  

where 
1 

E+Vl '  
B = -  

This result is easily checked by direct substitution. The density of states per particle is 
given in the usual way in terms of G+ = ( E  - H +  ic)- as 

n(E) = -n - 'N- '  ImTr (G') = -n- 'N- '  I m x  (ijlG'lij) (2.4) 
i , j  

so that we now turn to  the calculation of the diagonal matrix elements of the full Green 
function. This can be expanded by Dyson's equation : 

C = Go+CoH2Go+ . * e .  (2 .5)  
Using the notation N( t ,  i, k )  to  denote the number of walks of length t starting on atom i 
and ending on atom k we have in the notation of equation (1.3) 

We also note 
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We refer to the term with n factors H ,  in equation (2.5) as the nth order term T,. In 
appendix 1 we prove its matrix elements to have the following form: 

(ijlT,,lkl) = (ijlCoH,C,. . . HzGolkl) 

= V ;  ( A  + B aj,aj) . . . ( A  + B d a m +  I , / )  di,splal . . . d f i , , S k a n +  1 . (2.8) 
a i .  . . a n + l  

81 . . .B. 

The last factor suggests by comparison with (2.6) that the matrix elements of the nth 
order term may be related to the number of random walks starting and ending at the 
origin. This is not possible in the expression as it stands owing to the fact that the 
summations in the factors are not independent. 

3. Relation of the matrix elements to the number of walks 

To enable the summations to be separated it is necessary first to prove a relation between 
the matrix elements (ijlT,,lij) and (ijIT,,lil). This is done in appendix 2 and we find that 

It is then possible to express the matrix element (ijlT’lil) in terms of the total number 
of walks. This is done in appendix 3 and we find 

The matrix element (ijlGJil) may then be expressed as a series as follows: 

(ijlclil) = [4(4A + B)N(O, i ,  i )  + { V2(4A + B),N( 1, i, i)} + { V2,4B(4A + B)’N(O, i, i )  
i J J  i 

+ 
+ V;A, (~A + B),N(~, i, i)] + . . .]. 

+ B ) ~ N ( ~ ,  i ,  i ) }  + [ V : ( ~ A  + B ) ~ B {  4~ + ( 4 ~  + B ) } N (  1, i, i )  

(3.3) 

By collecting the coefficients of N ( t ,  i, i )  we obtain the following expression proved in 
appendix 4 : 

(3.4) 

where z = V:B(4A+B). This may now be substituted into equation (3.1) to obtain 
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Finally we can write down the density of states from (2.4): 

2BN(O, i ,  i )  V2B2N(1, i, i )  2(2A+B) .f ( V2A)‘  ] - N ( t ,  i, i) 
1-2 ‘=o 1-2 + ?{  1-V:B2 1-V$B2 n(E) = - R - ’ N - ’  Im 

(3.6) 

This expression is valid both for a periodic lattice and also in the presence of topological 
disorder provided that the matrix elements are taken to  be unchanged and that the 
fourfold coordination is maintained. 

4. Application to the periodic lattice 

Thorpe (1972) has given an explicit expression for the number of walks N ( t ,  i, i )  on a 
(periodic) diamond lattice and Weaire and Thorpe (1971) have given an expression 
for the density of states. By substituting for N(t ,  i ,  i )  in (3.6) it is therefore possible to 
check the correctness of this expression for the density of states. This we now proceed 
to do. 

The expression given by Thorpe (1972) is 

N(2t, i ,  i )  = - 4‘ sjs (1 +cos x cos y+cos y cos z+cos z cos x)’ dx dy dz 
- n  

(27d3 

N( t ,  i ,  i) = 0 for t odd. 

Let us write 

N(2t ,  i, i )  = ~ /js {4( 1 + axy,)]‘  dx dy dz. 
- n  

(27d3 

Substituting this into (3.6) 
n sss go [E) 2 t  {4(1 + a x y ~ ) ] ‘  dx dY dz 

- R  

. (4.2) I dx dy dz 
( 1 - ~ ) ~ - 4 V ~ A ~ ( l + c t , ~ , )  

2B 2(2A + B)(1- Z )  = --Im 
- n  

(27d3 

Using the result that 

(1 - z ) ’ - ~ V ~ A ~ ( ~ + ~ , , , )  
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we finally obtain 

I 
I 

(E - 3 V,)’(E + V,)’ dx dy dz s// ( ( E  - v,)’ - 47/: - vi>’ -4k‘;vf(l+ @,yz) 

= --Im 2(E+ VI) +2(E-  Vl){(E- v1)’-4v:- V:} 
(W3 

dx dy dz sjs {(E- v1)’-4V:- V~}2-41/~Vf(1+@,yz)  ’ 
-II 

This expression agrees exactly with that obtained by Weaire and Thorpe (1971). 

(4.3) 

5. Conclusion 

An expression has been obtained for the density of states of a system described by the 
hamiltonian (1.3) in terms of the number of returns to  the origin, provided the matrix 
elements remain constant. This is also valid for a topologically disordered lattice if 
the fourfold coordination is maintained. The expression has been checked by evaluating 
it for the diamond lattice and gives the known density of states for this case. 

Appendix 1. Proof of equation (2.8) 

The proof follows by induction. By inserting complete sets of states we have 

(Al.l)  
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Letting 8 = Bn+ 1, T = an+ the right-hand side becomes 

I/"+ 1 
2 1 (A+Baj ,a , )  * (A+B6antz,J'i,s8:* . ' B ~ + ~ , s P + z  

a l . . .a .  + 2 
P l . . . B n +  I 

which is the same expression as that assumed except that n is  replaced by n+ 1. To 
complete the proof we show it is true for n = 1. Now 

Using equation (Al . l )  

Therefore 

Appendix 2. Proof of equation (3.1) 

We have from equation (2.8) that 

Now 
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which is equation (3.1). 
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Appendix 3. Proof of equation (3.2) 

This equation follows by simply writing down the expressions for the first few terms. 
Thus 

(i$ T,Jil) = 4(4A + B)N(O, i, i) 
i J J  i 

1 (ijlTJil) = 1 V2(4A+B)’N(1, i, i) 
i J . 1  i 

It follows that if the functional dependence of Tn on the number of walks is explicitly 
denoted by Tn[N(n, i, i)] we have 

which is equation (3.2), 

Appendix 4. Evaluation of equation (3.4) 

By applying equation (3.2) successively to each term in the series we obtain 

C (U/ qlil) = 4(4A + B)N(O, i, i) + V2(4A + B)’N( 1, i, i) + V:4B(4A + B)’N(O, i, i) 

+ I/ :A(~A + B)’N(2, i, i) + V 3 4 A  + B)’B{4A + (4.4 + B)}N(1, i, i) 

+ V ; A ’ ( ~ A  + B ) ’ N ( ~ ,  i, i) + v ~ B ’ ( ~ A  + B ) ~ N ( o ,  i, i) 

+ V:(4A + B)’{4A + 2(4A + B ) } N ( 2 ,  i, i) + V;A3(4A + B)’N(4, i, i) + . . . . 

n 

(A4.1) 
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By collecting terms the coefficient of N(0, i, i )  is found to be 

4(4A + B) + Vi4B(4A + B)2 + Vi4B2(4A + B)3 + V;4B3(4A + B)4 + . . . 
where z = ViB(4A+B).  

4(4 + B) 
1 - z  

=- 

The coefficient of N( t ,  i, i), t > 1, can be calculated similarly if we remember the following 
identities : 

' j ( j + I ) . . , ( j + r )  - t(t+1) . . . (  t + r + l )  
- 

(r+2)!  j = o  c ( r + l ) !  

r !  dr z r - l  --- 
dzr (1 -z)  - (1 -z)'+l' 

It is 

1 V;a'-'c4A+B)( 4Az +- 4 A + B )  = (2) V A  ' 4 A + B  -++4A+B 4Az . 
( l -z ) '+I  (1-z)' 1 - z  1 - z  

Hence 

Using the result that y(E+,,+B ) = (4A+B)2 (1 - V i B 2 )  
A 1 - z  

we obtain 

which is equation (3.4). 
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